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WHY?

“improving the ease with which
the biology and ecology
communities can understand,
select and use appropriately
NASA remote sensing data.”
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Types of biodiversity data

Combining biodiversity data with remote sensing products
Existing tools for data fusion

Scaling with Beam
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Types of biodiversity data
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- Observation / occurrence
- Expert range maps

- Local Inventories

- Gridded surveys

- Regional checklists

- Distribution model predictions
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.. and more movement data.

Yale

Space Station

§§
»:

N Z

ICARUS

Movebank Sclence
Database Community

Hand-Held
Base Station




. I""Imilln;i..“,,M
2 4 8 16 3264 256 1012 4096 16384 65536
Body mass in grams (log, scale)

Yale



Combining biodiversity data

with remote sensing products
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Global land cover

Species presence

L=

Observation
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Biodiversity data M Environmental data
Not trivial ...




Existing tools for data fusion

42 MOL

) MAP OF LIFE



C
GDAL:

Advantages

Well documented
Extensible
Well integrated with other tools and systems
Large community of developers and users
What biology and ecology communities use and understand
Limits
e Requires everything (imagery and data) to be local
e Can't scale beyond local resources

Desktop applications and libraries
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AN ENV-Data

Advantages

e Large catalog of public imagery
e Kept up to date
e Specifically designed for annotating movement data

Limits

Slow (hours - days)

Not extensible

No support for raster upload

No support for spatial or temporal aggregation
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S Google Earth Engine

Advantages

e Large and growing catalog of imagery
e Kept up to date
e Abstracts complexity away (scales compute, manages tasking)
e Full spatial analysis API - supports aggregation in space-time
Limits
e High vendor lock-in / low portability
Limited interoperability with traditional tools
Very limited server-side logging (difficult to debug)
Quota limited per user
Fixed node size
Mediocre performance across large vector datasets. %
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1@hadaap Big-data frameworks

MmapReduce

Advantages

e Ultimate flexibility
e Ultimate scalability

Limits

e Harder to use, less accessible to non-technical users
o Often limited documentation and support for spatial analysis
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Scalability

C AN
Ease of use
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Bridging the divide with

Apache Beam
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An advanced unified programming model

Implement batch and streaming data processing jobs that
run on any execution engine.
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# sample images and apply spatiotemporal reducers
samples = (features
| 'sample_pixels' >> beam.ParDo(sample_region, args, asset)
'apply_reducers' >> beam.CombinePerKey(ReducePixels(args))

I
| 'format_reducer_output' >> beam.ParDo(format_reducer_output)
| 'group_by_location' >> beam.GroupByKey()




X, Cloud Dataflow

%  features S
Live pipeline

monitoring

A0 mn 6 s

Detailed logging

Dataflow Step, 2018-06-12_19_35_04-12251... ~ worker Any log level ~ ® No limit ~ Jump to now

Showing logs from all time (EDT) View (

2018-06-13 01:13:08.739 Completed workitem: 3451789027802838680 in 2.474665165 seconds
2018-06-13 01:13:08.711 Finished processing workitem 3451789027802838680 successfully. Report
2018-06-13 01:13:08.558 Finished the size estimation of the input at 0 files. Estimation took
201 6-13 01:13:08.506 Attempting refresh to obtain initial access_token

2018-06-13 01:13:08.506 Starting the size estimation of the input

2018-06-13 01:13:08.504 Renamed 15 shards in 1.35 seconds.




Autoscaling

Jun 10,2018 6:08 PM

@ Target workers: 10




Drawbacks
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Very new

Need high availability access to pixel data (high QPS
API or local to compute node)

Cloud runners (DataFlow) have ~6 minute startup cost
Less suitable for small requests

Exotic environments difficult to support and scale
Google Cloud Dataflow only full-service option



Architecture: Environmental annotation of biodiversity occurrence data

) Google Cloud Platform

REST API
AppEngine Species
@ distribution
—
modelling
Raw occurrence Analytics Cloud ML
Cloud Storage : BigQuery

Annotation plpellne
Cloud Dataflow

Processed occurrence

Bi er
'gQuery Enriched CSV

Cloud Storage

Visualization
Map of Life

Streaming : Batch & Streaming

Sensor data Environmental data API Source imagery
Cloud Pub/Sub Earth Engine Cloud Storage




Project deliverables

e Open source Apache Beam code to run data
fusion requests on local and API accessible
datasets

e HTTP API to manage data fusion requests on the
Google Cloud Dataflow pipeline runner

e Command-line interface to interact with API

e \Web front-end

e Suite of 1km products suitable for conservation
science (1km daily temperature and precip)
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